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Abstract. Hidden Markov Model (HMM)-based synthesis (HTS) has recent-
ly been confirmed to be the most effective method in generating natural speech. 
However, it lacks adequate context generalization when the training data is lim-
ited. As a solution, current study provides a new context-dependent speech 
modeling framework based on the Gaussian Conditional Random Field (GCRF) 
theory. By applying this model, an innovative speech synthesis system has been 
developed which can be viewed as an extension of Context-Dependent Hidden 
Semi Markov Model (CD-HSMM). A novel Viterbi decoder along with a sto-
chastic gradient ascent algorithm was applied to train model parameters. Also, a 
fast and efficient parameter generation algorithm was derived for the synthesis 
part. Experimental results using objective and subjective criteria have shown 
that the proposed system outperforms HSMM substantially in limited speech 
databases. Moreover, Mel-cepstral distance of the spectral parameters has been 
reduced considerably for any size of training database. 

Keywords: Gaussian conditional random field, statistical parametric speech 
synthesis, HSMM extension. 

1 Introduction 

Statistical Parametric Speech Synthesis (SPSS) has reportedly been a dominant re-
search area due to its peculiarities since the last decade [1, 2]. Modeling in the domain 
of SPSS is of prime importance and it is naïve to assume unnecessary simplifying 
assumptions in modeling as it may reduce the quality of synthetic speech. This work 
extends Hidden Semi Markov Model (HSMM) synthesis [3] by eliminating some of 
its simplifying assumptions. In the next subsection we will briefly discuss related 
works. 

1.1 Related Work 

Many research activities have already been performed to improve the quality of basic 
HTS. The progresses such as Hidden Semi Markov Model (HSMM) [3], Trajectory 
HMM [4] and Multi-Space Distribution HMM [5] have made HTS the most powerful 
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statistical approach. However, these systems do not lead to an acceptable quality with 
limited databases (less than 30 minutes). This deficiency is a direct result of applying 
decision-tree-based context clustering which cannot exploit contextual information 
efficiently, because each training sample is associated in modeling only one context 
cluster. This study is an attempt to improve SPSS quality even for limited training 
data. 

The rest of the paper is organized as follows. In Section 2, GCRF is introduced. 
Sections 3 & 4 propose a context-dependent model for speech using GCRF and its 
application in speech synthesis.  Experimental results are presented in Section 5 and 
final remarks are given in Section 6. 

2 Gaussian Conditional Random Field 

To define GCRF, first a brief description of Markov Random Field (MRF) and Condi-
tional Random Field (CRF) is given. 
Definition 1. Let G = (V, E) be an undirected graph, X = (X)))∈+ be a set of random 
variables indexed by nodes of G, X is modeled by MRF iff	∀A, B ⊆ V, P(X2|X4) =
P(X2|X5), where S is a border subset of A such that every path from a node in A to a 
node in B passes through S [6]. 
Definition 2. (X, C) is a CRF iff for any given set of random variables C, X forms an 
MRF [6]. 
In the speech synthesis framework, given an utterance contextual information C, suf-
ficient statistics of speech (acoustic features) can be considered as an MRF. 
Hammersley-Cliffort’s Theorem. Suppose (x, c) is an arbitrary realization of a CRF 
(X, C) defined based on a graph G with positive probability, then P(x|c) can be factor-
ized by the following Gibbs distribution [7]. 

P(x|c) = :
;(<) ∏ Ψ?(x, c)@ ,  (1) 

where @ denotes a set of all maximal cliques of G. Z(c) is called partition function 
which ensures that the distribution sums to one. In other words, 

Z(c) = ∬ ∏ Ψ?(x, c)@C .  (2) 

The theorem also states that for any choice of positive local functions DΨ?(x)E (poten-
tial functions) a valid CRF is gene-rated. One of the simplest choices of a potential 
function is Gaussian function. CRF with Gaussian potential function is named GCRF 
which is introduced in the next section. 

 

3 Context-Dependent Speech Modeling Using GCRF 

For modeling speech, the proposed system primarily splits each segment into a fixed 
number of states. Then, acoustic and binary contextual features (sufficient statistics) 



are extracted for each state. The goal is to model and generate acoustic features pro-
vided that contextual features are present. The following notations are taken into ac-
count henceforth. 

L,I: Total number of acoustic and linguistic features. 
H: Total number of states for the current utterance. 
V: All acoustic parameters. (Extracted from frame samples) 
x#$: %-th acoustic feature of state j. (Extracted from V) 
x#: %-th acoustic feature vector, x# ≝ (x#), … , x#,-

.. 
X: All acoustic features, X ≝ 0x), … , x12.  
c$4: i-th binary linguistic feature of state j. 
c$: Linguistic feature vector of state j, c$ ≝ (c$), … , c$6-

.
. 

C: All linguistic features, C ≝ (c),… , c,-. 

3.1 GCRF Graphical Structure  

Factor graph [8] of the proposed GCRF (with order one) is depicted in Figure 1. As it 
is obvious in the figure, GCRF is a set of L linear chain CRF [8] (with order one) 
which are independent when C is given. Each rectangular node (Ψ:$) represents a po-
tential function describing the effect of a maximal clique (x:$, x:;$<)=, c$) in the ran-
dom field distribution. This figure can be extended to higher order linear chain CRFs. 
As a result, if GCRF extends with order o, Ψ:$ becomes a function of (x:$,…, x:;$<?=, 
c$). 

 
Fig. 1. Factor graph of the first order GCRF.  

3.2 GCRF Distribution  

Having described the graphical model, this subsection investigates the probability 
distribution provided by GCRF. Markov property of MRFs implies the following 
equality. 

P;X|C; θ= D ∏ P;x#|C; θ=1
#F) ,  (3) 



where θ is the set of all model parameters. This paper assumes that the partition func-
tion, ΨJK, is formulated by Equation 4 which is a Gaussian function with parameters 
HJKM and uJKM. 

ΨOK ≝ exp S− :
U∑ WXxOYHOKMxO + uOKMY xO[cKM\]M^: _. (4) 

In this equation, HJKM has to be a symmetric and positive definite matrix. If HJKM is not 
restricted to a positive definite matrix, the distribution may be realized by a number 
greater than one. Thus, considering positive definite condition seems to be necessary. 
Moreover, in GCRF with order o, HJMK  and uJMK  contain only (o + 1) × (o + 1)  and 
(o + 1)  nonzero elements respectively. The overall form of model parameters is 
shown as follows. 
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By considering defined potential function and according to the fundamental theorem 
of Hammersley and Cliffort the final expression for P(xJ|C; θJ) is given by 

P(xO|C; θO) = :
op(q;rp)

exp S− :
U (xOstOxO + uOsxO)_, (6) 

where HJ = ∑ ∑ cKMHJKM]M^:
H
K^:  and uJ = ∑ ∑ cKMuJKM]M^:

H
K^: . 

ZJ is the partition function and is computed by Equation 2. Fortunately, for Gaussian 
distribution of Equation 4 there is a closed formula for the partition function as:  

uO(v; θO) = (2x)Hy(det(HOj:))
|
y exp }:~ uOsHOj:uO�. (7) 

A marvelous point is that conventional CD-HSMM can be considered as a type of 
GCRF with order zero and mutually exclusive contextual features. 

 

4 Speech Synthesis Based on GCRF 

Figure 2 shows an overview of the proposed GCRF-based speech synthesis system. 
All blocks in the figure are identical to classical SPSS [1], except the three further 
blocks added with a different color. In the training part, acoustic sufficient statistics or 
features (X) are extracted according to both speech parameters (V) and state boundar-
ies (�). State boundaries are latent and the added Viterbi block is employed to train 



them in an unsupervised manner. It should be noted that only sufficient statistics are 
modeled in the training phase; therefore synthesis phase has to generate them first. 
After generating features, speech parameters and speech signal are successively syn-
thesized. 

 
Fig. 2. An overview of the proposed architecture.  

4.1 Estimation of Model Parameters 

In this section, we discuss how to train model parameters	θ. We are given a set of T 
iid training data	DX�, C�E�^:Y , the goal is to find the best set of parameters,	θ� , which 
maximizes the conditional log likelihood: 

θ� = argmax	r	L"θ$,  (8) 

L"θ$ ≝ &
'
∑ log P"X.|C.; θ$'
.2& .  (9) 

The problem is that, acoustic feature Matrix X., wholly depends on the state bounda-
ries which are latent. Hence, it is impossible to compute	L"θ$. A correct solution for 
this problem that converges to the Maximum Likelihood (ML)-estimate is given by 
the Expectation Maximization (EM) algorithm; however, EM is computationally ex-
pensive. Another commonly used method which is computationally efficient and 
works well in practice is to compute first X. and then L"θ$ on the Viterbi path. Ap-
pling this approach and substituting P"X.|C.; θ$ with Equation 6 gives 



L"θ$ = − &
7'
∑ ∑ 8L9. "θ9$:;

92&
'
.2& ,  (10) 

L9. "θ9$ ≝ x9.
=H9.x9. + u9.

=x9. + A log 2π − log det H9. +
&
G
u9.
=H9.

H&u9.. (11) 

In general, this function cannot be maximized in closed form, therefore numerical 
optimization is used. The partial derivatives of L"θ$ are calculated as follows. 

I;"J$
KLMNO

= − &
7'
∑ I;M

P"JM$
KLMNO

'
.2& , (12) 

I;M
P"J$

KLMNO
= QRx9. +

&
7
H9.

H&u9.S cUV. W ⋆ Y"A, j, o$, (13) 

I;"J$
K[MNO

= − &
7'
∑ I;M

P"JM$
K[MNO

'
.2& , (14) 

I;M
P"JM$

K[MNO
= QRx9.x9.

' − H9.
H& − &

G
H9.

H&u9.u9.
'H9.

H&S cUV. W ⋆ \"A, j, o$. (15) 

 
where	o denotes the order of model, ⋆ denotes element-by-element product opera-

tor and \ (Y) is a 	A-by-A (A) Boolean matrix (vector) defined by an indicator func-
tion I as: 

Y"A, j, o$ ≝ _Y`"A, j, o$aA×&,  (16) 

Y`"A, j, o$ ≝ I"j − o ≤ m ≤ j$, 

\"A, j, o$ ≝ _\`e"A, j, o$aA×&,  (17) 

\`e"A, j, o$ ≝ If"j − o ≤ m ≤ j$	&"j − o ≤ n ≤ j$i.  

A common solution of this optimization problem is to take entire training samples 
into account and update model parameters using an optimization algorithm such as 
BFGS. Unfortunately, this in turn leads to large computational complexity. This paper 
proposes the application of stochastic gradient ascent [9] method which is faster than 
above-mentioned algorithm by orders of magnitude. This method has proven to be 
effective [9]. Following equations express its updating rule: 

u9VU. = u9VU.H& − jk
I;M

l"JM$
KLMNO

m
LMNO
n ,[MNO

n
,  (18) 

H9VU. = H9VU.H& − jk
I;M

P"JM$
K[MNO

m
LMNO
P ,[MNO

P
.  (19) 

A variable step size algorithm described by [10] is utilized in our experiments. 



4.2 Viterbi Algorithm for GCRF 

Given a sequence of acoustic parameters (V), sentence contextual features (C) and a 
trained GCRF parameters (θ), this section presents an algorithm to find the most like-
ly state boundaries (��). Thus the aim is to estimate ��  such that 

�� ≝ argmax	�	P(�|V, C; θ) = argmax	�	P(X(�, V)|V, C; θ). (20) 

From Equation 6 we have 

�� = argmin	� 	∑ ϕK(�, V, C, θ)H
K^: ,  (21) 

where	ϕK(�, V, C, θ) ≝ ∑ ∑ XxJKYHJMKxJK + bJMKY xJK[cKM]M^:�J^: .  
Let �K be the j-th state boundary (j-th element of	�), then for a GCRF with order	o, ϕK 
becomes a function of �Kjkj:, … , �K instead of entire elements of	�. This fact gives us 
an ability to exploit dynamic programming for performing a complete search on	�. 
Inspired by the other Viterbi algorithms, we need to define an auxiliary variable	δK. 
δKX�Kjk, … , �K[ ≝ min�|,…,�����| ∑ ϕKX��jkj:, … , ��[K

�^: . (22) 

δK can be calculated from δKj: by following recursion. 

δK�:X�Kjk�:, … , �K�:[ = min����WδKX�Kjk, … , �K[ + ϕK�:X�Kjk, … , �K�:[\. (23) 

Using this recursion, it is straightforward to obtain Viterbi algorithm. 

4.3 Parameter Generation Algorithm 

This section, for a given GCRF, derives an algorithm to estimate the best synthesized 
speech parameters (V�) by maximizing the likelihood criteria, i.e. 

V� ≝ argmax	+	P(V|θ) = argmax	+ 	∑ P(X(V, �)|θ)� . (24) 

The synthesis part needs to respond quickly, however, solving this problem directly is 
challenging. Hence, the algorithm derived from Equation 24 is not practical.  
A two-step algorithm is proposed here which approximates V� fast. 
Step 1. For a given θ, compute the ML-estimate of X: 

X� ≝ argmax	�	P(X|θ).  (25) 

Step 2. For a given X, compute the ML-estimate of V: 

V� ≝ argmax	+	P(V|X).  (26) 

The first step is simply obtained by considering the distribution discussed in section 3. 
Since different acoustic features are statistically independent (given in Equation 3), 
the algorithm can generate features independently, i.e. 



x�O = argmax	Cp	P(xO|C; θO).  (27) 

Optimizing the Gaussian distribution	P(xJ|C; θJ), expressed by Equation 6, results in 
the set of linear equations below:  

HOx�O = − :
U bO .  (28) 

HJ is symmetric and positive definite, so Equation 28 can be efficiently solved using 
the Cholesky decomposition. 
Second step depends heavily on the selected acoustic features. For the set of acoustic 
features extracted in our system, Tokoda et al. [11] algorithm was used in this step. 

5 EXPERIMENTS 

5.1 Experimental Conditions 

To evaluate the proposed system, a Persian speech database [12] consisting of 1000 
utterances with an average length of 8 seconds was employed. Experiments were 
conducted on a fixed test set of 200 utterances and 5 different training sets with re-
maining 50, 100, 200, 400 and 800 utterances. It should be noted that the average 
length of each utterance is about 8 seconds. Speech parameters including mel-cepstral 
coefficients, bandpass aperiodicity and fundamental frequency were extracted by 
STRAIGHT [13]. Sample mean and variance of each static and dynamic parameter, in 
addition to the voicing probability and duration are computed as the acoustic state 
features. For contextual state features a set of 150 well designed binary questions are 
employed. Following subsections evaluate the proposed method in contrast to the 
HSMM-based technique. 

5.2 Objective Evaluation 

As Figure 3 shows, three objective measures were calculated to evaluate the proposed 
and HSMM-based systems, namely the average mel-cepstral distortion (expressed in 
dB) [14], the Root-Mean-Square (RMS) error of fundamental frequency logarithm 
(expressed in cent) and the RMS error of phoneme durations (expressed in terms of 
number of frames). Computing the first and second measures needs an assumption 
about state boundaries that was estimated here using the Viterbi algorithm. Since F0 
value is not observed in unvoiced regions, only voiced frames of speech were taken 
into account for the second measure. 

From Figure 3, it is noticeable that GCRF always outperforms HSMM in generat-
ing mel-cepstral and duration parameters, but HSMM is superior in synthesizing fun-
damental frequency when the number of training data is larger than 200 utterances. 
This drawback is a result of weak estimation of F0 parameters during the training 
process. Table 1 compares the accuracy of voiced/unvoiced detection in proposed 
system with its counterpart in HSMM-based synthesis.  



5.3 Subjective Evaluation 

We conducted preference score measure to compare the proposed and HSMM-based 
systems subjectively. 20 subjects were presented with 10 randomly chosen pairs of 
synthesized speech from the two models and then asked for their preference. 

Figure 4 shows the average preference score. The result confirms that the synthetic 
speech generated by proposed system has been favorable when training data are lim-
ited. 

 

 

Fig. 4. Subjective evaluation of HSMM and 
proposed systems using preference score.  

Table 1. Accuracy of Voiced/Unvoiced Detector. 

# train 
data 

Proposed 
accuracy 

HSMM 
accuracy 

50 0.9184 0.8851 
100 0.9241 0.8828 
200 0.9157 0.8903 
400 0.9104 0.8783 
800 0.9037 0.8809 

 

6 Conclusion 

This paper improves HSMM-based synthesis in the following ways: 

1. The independence assumption of states distribution in HTS is removed. 
2. In contrast to HMM, the proposed model does not limit its potential functions to be 

a probability distribution. 

Fig. 3. Objective evaluation of HSMM-based and proposed speech synthesis systems. (Left) Mel-cepstral distance [dB]; 
(Middle) RMSE of log F0 [cent]; (Right) RMSE of phoneme duration [frame]. 
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3. CD-HMM uses decision-tree-based context clustering that does not provide effi-
cient generalization in limited training data, because each speech parameter vector 
is associated in modeling of only one context cluster. In contrast, our method con-
tributes each training vector in many clusters to offer an efficient generalization. 

Despite the advantages, which made our system to outperform in small training data, 
a drawback such as difficult training procedure is noticed in large databases. 
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